Optimal product design using a colony of virtual ants
نویسندگان
چکیده
The optimal product design problem, where the ‘‘best’’ mix of product features are formulated into an ideal offering, is formulated using ant colony optimization (ACO). Here, algorithms based on the behavior of social insects are applied to a consumer decision model designed to guide new product decisions and to allow planning and evaluation of product offering scenarios. ACO heuristics are efficient at searching through a vast decision space and are extremely flexible when model inputs continuously change. When compared to complete enumeration of all possible solutions, ACO is found to generate near-optimal results for this problem. Prior research has focused primarily on optimal product planning using consumer preference data from a single point in time. Extant literature suggests these formulations are overly simplistic, as a consumer s level of preference for a product is affected by past experience and prior choices. This application models consumer preferences as evolutionary, shifting over time. 2005 Elsevier B.V. All rights reserved.
منابع مشابه
یادگیری از جامعه مورچگان در بهینهسازی دیوارهای حائل بتنی
: In the present paper, lessons are learnt from ant society so that humankind can optimize his engineering issues. As an example of such issues, a reinforced concrete retaining wall for which the application of optimization can reduce the costs involved is considered. Traditional design procedure for reinforced concrete retaining walls is unable to design an optimized wall unless a large trial ...
متن کاملImprovement of Routing Operation Based on Learning with Using Smart Local and Global Agents and with the Help of the Ant Colony Algorithm
Routing in computer networks has played a special role in recent years. The cause of this is the role of routing in a performance of the networks. The quality of service and security is one of the most important challenges in routing due to lack of reliable methods. Routers use routing algorithms to find the best route to a particular destination. When talking about the best path, we consider p...
متن کاملOptimal Truss Design Using Ant Colony Optimization
The paper presents a methodology to arrive at optimal truss designs using Ant Colony Optimization (ACO) algorithms. Ant Colony Optimization is a population-based, artificial multi-agent, general-search technique for the solution of difficult combinatorial problems with its theoretical roots based on the behavior of real ant colonies and the collective trail-laying and trail-following of its mem...
متن کاملImprovement of Routing Operation Based on Learning with Using Smart Local and Global Agents and with the Help of the Ant Colony Algorithm
Routing in computer networks has played a special role in recent years. The cause of this is the role of routing in a performance of the networks. The quality of service and security is one of the most important challenges in routing due to lack of reliable methods. Routers use routing algorithms to find the best route to a particular destination. When talking about the best path, we consider p...
متن کاملANT COLONY ALGORITHMS FOR NONLINEAR ANALYSIS AND OPTIMAL DESIGN OF STRUCTURES
In this paper nonlinear analysis of structures are performed considering material and geometric nonlinearity using force method and energy concepts. For this purpose, the complementary energy of the structure is minimized using ant colony algorithms. Considering the energy term next to the weight of the structure, optimal design of structures is performed. The first part of this paper contains ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 176 شماره
صفحات -
تاریخ انتشار 2007